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ABSTRACT 

Clinical trial drug failures brought on by 

unanticipated side effects put participants' 

health at risk and result in significant 

financial losses. Algorithms for predicting 

side effects might potentially direct the 

medication creation process. The LINCS 

L1000 dataset builds a knowledge 

foundation for context-specific aspects and 

offers a wealth of cell line gene expression 

data disturbed by various medications. Only 

the high-quality trials in LINCS L1000 are 

used in the state-of-the-art method, which 

discards a significant percentage of the 

experiments in order to use context-specific 

information. Our aim in this study is to fully 

utilise this data in order to improve the 

prediction performance. Five deep learning 

architectures are used in our experiments. 

When using drug chemical structure (CS) 

and the entire collection of drug altered gene 

expression profiles (GEX) as modalities, we 

find that a multi-modal design yields the 

greatest prediction performance among 

multi-layer perceptron-based architectures. 

In general, we find the CS to be more 

informative than the GEX. The best results 

are obtained by a convolutional neural 

network-based model that just employs the 

SMILES string representation of the 

medications; this model outperforms the 

state-of-the-art by 13:0% in macro-AUC and 

3:1% in micro-AUC. Additionally, we 

demonstrate that the model can predict drug-

side effect couples that have been 

documented in the literature but were absent 

from the ground truth side effect dataset. 

 

1. INTRODUCTION  

 

Computational methods hold great promise 

for mitigating the health and financial risks 

of drug development by predicting possible 

side effects before entering into the clinical 

trials. Several learning based methods have 

been proposed for predicting the side effects 

of drugs based on various features such as: 

chemical structures of drugs drug-protein 

interactions, protein-protein interactions 

(PPI), activity in metabolic networks, 

pathways, phenotype information and gene 

annotations [8]. In parallel to the above 

mentioned approaches, recently, deep 

learning models have been employed to 

predict side effects: (i) [31] uses biological, 

chemical and semantic information on drugs 

in addition to clinical notes and case reports 

and (ii) [4] uses various chemical 

fingerprints extracted using deep 
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architectures to compare the side effect 

prediction performance.  

 

                While these methods have proven 

useful for predicting adverse drug reactions 

(ADRs – used\ interchangeably with drug 

side effects), the features they use are solely 

based on external knowledge about the 

drugs (i.e., drug-protein interactions, etc.) 

and are not cell or condition (i.e., dosage) 

specific. To address this issue ,Wang et al. 

(2016) utilize the data from the LINCS 

L1000 project [32]. This project profiles 

gene expression changes in numerous 

human cell lines after treating them with a 

large number of drugs and small-molecule 

compounds. By using the gene expression 

profiles of the treated cells, [32] provides the 

first comprehensive, unbiased, and cost-

effective prediction of ADRs. The paper 

formulates the problem as a multi-label 

classification task. Their results suggest that 

the gene expression profiles provide 

context-dependent information for the side-

effect prediction task. While the LINCS 

dataset contains a total of 473,647 

experiments for 20,338 compounds, their 

method utilizes only the highest quality 

experiment for each drug to minimize noise. 

This means that most of the expression data 

are left unused, suggesting a potential room 

for improvement in the prediction 

performance. Moreover, their framework 

performs feature engineering by 

transforming gene expression features to 

enrichment vectors of biological terms. In 

this work, we investigate whether the 

incorporation of gene expression data along 

with the drug structure data can be leveraged 

better in a deep learning framework without 

the need for feature engineering.  

 

          In this study, we propose a deep 

learning framework, Deep Side, for ADR 

prediction. Deep Side uses only (i) in vitro 

gene expression profiling experiments 

(GEX) and their experimental meta data 

(i.e., cell line and dosage - META), and (ii) 

the chemical structure of the compounds 

(CS). Our models train on the full LINCS 

L1000 dataset and use the SIDER dataset as 

the ground truth for drug - ADR pair labels 

[13]. We experiment with five architectures: 

(i) a multi-layer perceptron (MLP), (ii) MLP 

with residual connections (Res MLP), (iii) 

multi-modal neural net- works (MMNN. 

Concat and MMNN. Sum), (iv) multi-task 

neural network (MTNN), and finally, (v) 

SMILES convolutional neural network 

(SMILES Conv).  

 

                We present an extensive 

evaluation of the above-mentioned 

architectures and investigate the contribution 

of different features. Our experiments show 

that CS is a robust predictor of side effects. 

The base MLP model, which uses CS 

features as input, produces _11% macro-

AUC and _2% micro- AUC improvement 

over the state-of-the-art results provided in 

[32], which uses both GEX (high quality) 

and CS features. The multi-modal neural 

network model, which uses CS, GEX and 

META features and uses summation in the 

fusion layer (MMNN. Sum) achieves 0:79 

macro-AUC and 0:877 micro-AUC which is 

the best result among MLP based 

approaches. We also find out that when the 
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chemical structure features are fully utilized 

in a complex model like ours, it overpowers 

the information that is obtained from the 

GEX dataset. The convolutional neural 

network that only uses the SMILES string 

representation of the drug structures 

achieves the best result among all the 

proposed architectures with provides 13:0% 

macro-AUC and 3:1% micro-AUC 

improvement over the state-of-the-art 

algorithm.  

2. EXISTING SYSTEM 

 

A drug-drug interaction (DDI) is defined as 

an association between two drugs where the 

pharmacological effects of a drug are 

influenced by another drug. Positive DDIs 

can usually improve the therapeutic effects 

of patients, but negative DDIs cause the 

major cause of adverse drug reactions and 

even result in the drug withdrawal from the 

market and the patient death. Therefore, 

identifying DDIs has become a key 

component of the drug development and 

disease treatment.  

In this study, an existing system, develops a 

method to predict DDIs based on the 

integrated similarity and semi-supervised 

learning (DDI-IS-SL). DDI-IS-SL integrates 

the drug chemical, biological and phenotype 

data to calculate the feature similarity of 

drugs with the cosine similarity method. The 

Gaussian Interaction Profile kernel 

similarity of drugs is also calculated based 

on known DDIs. A semi-supervised learning 

method (the Regularized Least Squares 

classifier) is used to calculate the interaction 

possibility scores of drug-drug pairs. In 

terms of the 5-fold cross validation, 10-fold 

cross validation and de novo drug 

validation, DDI-IS-SL can achieve the better 

prediction performance than other 

comparative methods. In addition, the 

average computation time of DDI-IS-SL is 

shorter than that of other comparative 

methods. Finally, case studies further 

demonstrate the performance of DDI-IS-SL 

in practical applications. 

Disadvantages 

• The complexity of data: Most of the 

existing machine learning models must be 

able to accurately interpret large and 

complex datasets to detect an accurate Drug 

Side Effect. 

• Data availability: Most machine learning 

models require large amounts of data to 

create accurate predictions. If data is 

unavailable in sufficient quantities, then 

model accuracy may suffer. 

• Incorrect labeling: The existing machine 

learning models are only as accurate as the 

data trained using the input dataset. If the 

data has been incorrectly labeled, the model 

cannot make accurate predictions. 

 

3. PROPOSED SYSTEM 

Multi-layer perceptron (MLP) Our MLP 

[22] model takes the concatenation of all 

input vectors and applies a series of fully-

connected (FC) layers. Each FC layer is 

followed by a batch normalization layer 

[10]. We use ReLU activation [16], and 

dropout regularization [27] with a drop 

probability of 0:2. The sigmoid activation 

function is applied to the final layer outputs, 

which yields the ADR prediction 

probabilities. The loss function is defined as 

the sum of negative log- probabilities over 

https://doi.org/10.5281/zenodo.14066203


                                       www.ijbar.org  

ISSN 2249-3352 (P) 2278-0505 (E)   

Cosmos Impact Factor-5.86 

 

 

 

 

                Index in Cosmos 

Nov 2024, Volume 14, ISSUE 4 

UGC Approved Journal 

 
 

 

 

 

https://doi.org/10.5281/zenodo.14066203 

Page | 434 

 

 

ADR classes, i.e. the multi-label binary 

cross-entropy loss (BCE). An illustration of 

the architecture for CS and GEX features is 

given in this system. 

Residual multi-layer perceptron (ResMLP) 

The residual multi-layer perceptron 

(ResMLP) architecture is very similar to 

MLP, except that it uses residual-

connections across the fully- connected 

layers. More specifically, the input of each 

intermediate layer is element-wise added to 

its output, before getting processed by the 

next layer. Such residual connections have 

been shown to reduce the vanishing gradient 

problem to a large extend [7].  

This effectively allows deeper architectures, 

therefore, potentially learning more complex 

and parameter-efficient feature extractors. 

Multi-modal neural networks (MMNN) The 

multi-modal neural network approach 

contains distinct MLP sub-networks where 

each one extract features from one data 

modality only. The outputs of these sub-

networks are then fused and fed to the 

classification block. For feature fusion, we 

consider two strategies: concatenation and 

summation. While the former one 

concatenates the domain-specific feature 

vectors to a larger one, the latter one 

performs element-wise summation. By 

definition, for summation based fusion, the 

domain-specific feature extraction sub-

networks have to be designed to produce 

vectors of equivalent sizes. We refer to the 

concatenation and summation based MMNN 

networks as MMNN.Concat and 

MMNN.Sum, respectively. 

Multi-task neural network (MTNN) our 

multitask learning (MTL) based architecture 

aims to take the side effect groups obtained 

from the taxonomy of ADReCS into 

account. For this purpose, the approach 

defines shared and task-specific MLP sub-

network blocks. The shared block takes the 

concatenation of GEX and CS features as 

input and outputs a joint embedding. Each 

task-specific sub-network then converts the 

joint embedding into a vector of binary 

prediction scores for a set of inter-related 

side-effect classes. 

Advantages 

 

 The proposed system implemented 

many ml classifies for testing and 

training on datasets. 

 The proposed system developed 

Convolutional neural networks 

(CNN) which are known to provide a 

powerful way of automatically 

learning complex features in vision 

tasks to find an accurate accuracy on 

the datasets. 

4. SYSTEM ARCHITECTURE  
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5. MODULES 

Service Provider 

In this module, the Service Provider has to 

login by using valid user name and 

password. After login successful he can do 

some operations such as           Train & Test 

Drug Data Sets, View Trained and Tested 

Drug Datasets Accuracy in Bar Chart, View 

Trained and Tested Drug Datasets Accuracy 

Results, View Drug Side Effect Prediction 

Type, Find Drug Side Effect Prediction 

Type Ratio, Download Predicted Data Sets, 

View Drug Side Effect Prediction Type 

Ratio Results, View All Remote Users. 

View and Authorize Users 

In this module, the admin can view the list 

of users who all registered. In this, the 

admin can view the user’s details such as, 

user name, email, address and admin 

authorizes the users. 

Remote User 

In this module, there are n numbers of users 

are present. User should register before 

doing any operations. Once user registers, 

their details will be stored to the database.  

After registration successful, he has to login 

by using authorized user name and 

password. Once Login is successful user 

will do some operations like REGISTER 

AND LOGIN,PREDICT DRUG SIDE 

EFFECT TYPE, VIEW YOUR PROFILE. 

 

6. ALGORITHIM 

Gradient boosting  

Gradient boosting is a machine 

learning technique used 

in regression and classification tasks, among 

others. It gives a prediction model in the 

form of an ensemble of weak prediction 

models, which are typically decision 

trees.[1][2] When a decision tree is the weak 

learner, the resulting algorithm is called 

gradient-boosted trees; it usually 

outperforms random forest.A gradient-

boosted trees model is built in a stage-wise 

fashion as in other boosting methods, but it 

generalizes the other methods by allowing 

optimization of an 

arbitrary differentiable loss function. 

 

Logistic regression Classifiers 

 

Logistic regression analysis studies the 

association between a categorical dependent 

variable and a set of independent 

(explanatory) variables. The name logistic 

regression is used when the dependent 

variable has only two values, such as 0 and 1 

or Yes and No. The name multinomial 

logistic regression is usually reserved for the 

case when the dependent variable has three 

or more unique values, such as Married, 

Single, Divorced, or Widowed. Although the 

type of data used for the dependent variable 

is different from that of multiple regression, 

the practical use of the procedure is similar. 

 

Logistic regression competes with 

discriminant analysis as a method for 

analyzing categorical-response variables. 

Many statisticians feel that logistic 

regression is more versatile and better suited 

for modeling most situations than is 

discriminant analysis. This is because 

logistic regression does not assume that the 

independent variables are normally 

distributed, as discriminant analysis does. 
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This program computes binary logistic 

regression and multinomial logistic 

regression on both numeric and categorical 

independent variables. It reports on the 

regression equation as well as the goodness 

of fit, odds ratios, confidence limits, 

likelihood, and deviance. It performs a 

comprehensive residual analysis including 

diagnostic residual reports and plots. It can 

perform an independent variable subset 

selection search, looking for the best 

regression model with the fewest 

independent variables. It provides 

confidence intervals on predicted values and 

provides ROC curves to help determine the 

best cutoff point for classification. It allows 

you to validate your results by automatically 

classifying rows that are not used during the 

analysis. 

SVM  

In classification tasks a discriminant 

machine learning technique aims at finding, 

based on an independent and identically 

distributed (iid) training dataset, a 

discriminant function that can correctly 

predict labels for newly acquired instances. 

Unlike generative machine learning 

approaches, which require computations of 

conditional probability distributions, a 

discriminant classification function takes a 

data point x and assigns it to one of the 

different classes that are a part of the 

classification task. Less powerful than 

generative approaches, which are mostly 

used when prediction involves outlier 

detection, discriminant approaches require 

fewer computational resources and less 

training data, especially for a 

multidimensional feature space and when 

only posterior probabilities are needed. 

From a geometric perspective, learning a 

classifier is equivalent to finding the 

equation for a multidimensional surface that 

best separates the different classes in the 

feature space. 

SVM is a discriminant technique, and, 

because it solves the convex optimization 

problem analytically, it always returns the 

same optimal hyperplane parameter—in 

contrast to genetic algorithms (GAs) or 

perceptrons, both of which are widely used 

for classification in machine learning. For 

perceptrons, solutions  are highly dependent 

on the initialization and termination criteria. 

For a specific kernel that transforms the data 

from the input space to the feature space, 

training returns uniquely defined SVM 

model parameters for a given training set, 

whereas the perceptron and GA classifier 

models are different each time training is 

initialized. The aim of GAs and perceptrons 

is only to minimize error during training, 

which will translate into several 

hyperplanes’ meeting this requirement. 

 

7. SCREEN SHOTS  
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8. CONCLUSION 

The process of developing pharmaceutical 

drugs is a drawn-out and difficult one. 

Unexpected adverse drug reactions (ADRs) 

during the drug development process have 

the potential to halt or restart the entire 

process. As a result, it is crucial to foresee 

the drug's adverse effects in advance during 

the design stage. To account for factors like 

dosage, time interval, and cell line, we 

forecast ADRs using our Deep Side 

framework, which combines chemical 

structure with context-related (gene 

expression) information. The suggested 

MMNN model outperforms models that just 

employ chemical structure (CS) fingerprints 

in terms of accuracy by utilising GEX and 

CS as integrated features. Considering that 

we are simply attempting to predict the 

condition-independent side effects, the 

stated accuracy is significant. Lastly, by 

using convolution on the SMILES 

representation of drug chemical structure, 

the SMILES Conv model performs better 

than any other method. 
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